
DIFUZE: Interface Aware Fuzzing for Kernel Drivers
Jake Corina

UC Santa Barbara
jcorina@cs.ucsb.edu

Aravind Machiry
UC Santa Barbara

machiry@cs.ucsb.edu

Christopher Salls
UC Santa Barbara
salls@cs.ucsb.edu

Yan Shoshitaishvili
Arizona State University

Yan.Shoshitaishvili@asu.edu

Shuang Hao
University of Texas at Dallas

shao@utdallas.edu

Christopher Kruegel
UC Santa Barbara
chris@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara
vigna@cs.ucsb.edu

ABSTRACT
Device drivers are an essential part in modern Unix-like systems to
handle operations on physical devices, from hard disks and print-
ers to digital cameras and Bluetooth speakers. The surge of new
hardware, particularly on mobile devices, introduces an explosive
growth of device drivers in system kernels. Many such drivers are
provided by third-party developers, which are susceptible to se-
curity vulnerabilities and lack proper vetting. Unfortunately, the
complex input data structures for device drivers render traditional
analysis tools, such as fuzz testing, less effective, and so far, research
on kernel driver security is comparatively sparse.

In this paper, we present DIFUZE, an interface-aware fuzzing
tool to automatically generate valid inputs and trigger the execu-
tion of the kernel drivers. We leverage static analysis to compose
correctly-structured input in the userspace to explore kernel dri-
vers. DIFUZE is fully automatic, ranging from identifying driver
handlers, to mapping to device file names, to constructing complex
argument instances. We evaluate our approach on seven modern
Android smartphones. The results show that DIFUZE can effectively
identify kernel driver bugs, and reports 32 previously unknown vul-
nerabilities, including flaws that lead to arbitrary code execution.

CCS CONCEPTS
• Security and privacy → Mobile platform security; Vulnera-
bility scanners;

KEYWORDS
Fuzzing, Kernel drivers, Interface aware

1 INTRODUCTION
Smartphones and other mobile devices occupy a central part of our
modern lives. They are the last thing many of us interact with at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134069

night and the first thing we reach for in the morning. We use them
to carry out financial transactions and to communicate with family,
friends, and coworkers, and allow them to record location, audio,
and video. Increasingly, they are used not just for personal and
commercial purposes, but also to facilitate government activity.

The importance of the security of these devices is obvious. If
an adversary compromises the device that has become our gate-
way to the connected world, he gains an enormous amount of
power. Therefore, much effort has gone into ensuring the secu-
rity of smartphones. This security is achieved using sophisticated
application sandboxing, by leveraging many attack mitigation tech-
niques targeting userspace applications (such as Address Space
Layout Randomization, Data Execution Protection, and SELinux),
and by making security a first-tier development goal. However,
there is a weakness in the security of mobile devices: their kernels.

Unlike userspace applications, for which several vulnerability
mitigation techniques are available and used, the kernels of modern
operating systems are relatively vulnerable to attack despite avail-
able protections [43]. As a result, as vulnerabilities in userspace
applications become rarer, attackers turn their focus on the kernel.
For example, over the last three years, the share of Android vulner-
abilities that are in kernel code increased from 4% (in 2014) to 39%
(in 2016) [62], highlighting the need for techniques to detect and
eliminate kernel bugs.

The kernel can itself be split into two types of code: core kernel
code and device drivers. The former is accessed through the system
call (syscall) interface, allowing a user to open files (the open()
system call), execute programs (the execve() system call), and so
on. The latter, on POSIX-compliant systems (such as Linux/An-
droid and FreeBSD/iOS which cover over 98% of the mobile phone
market), are typically accessed via the ioctl interface. This inter-
face, implemented as a specific system call, allows for the dispatch
of input to be processed by a device driver. According to Google,
85% of the bugs reported against the Android kernel (which is a
close fork of Linux) are in driver code written by third-party de-
vice vendors [62]. With the continually growing number of mobile
devices in use, and with the criticality of their security, automated
approaches to identify vulnerabilities in device drivers before they
can be exploited by attackers are critical.

While automatic analysis of the system call interface has been
thoroughly explored by related work [28, 34], ioctls have been
neglected. This is because, while interaction with syscalls follows a

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2123

https://doi.org/10.1145/3133956.3134069

unified, well-defined specification, interaction with ioctls varies
depending on the device driver in question. Specifically, the ioctl
interface comprises structured arguments for each of a set of valid
commands, with both the commands and the data structures be-
ing driver-dependent. While this has security implications (i.e.,
pointers, dynamically-sized fields, unions, and sub-structures in
these structures increase the chance of a vulnerability resulting
from the mis-parsing of the structure), it also makes these devices
hard to analyze. Any automated analysis of such devices must be
interface-aware, in the sense that, to be effective, it must interact
with ioctls using the command identifiers and data structures
expected by them.

In this paper, we present DIFUZE, a novel combination of tech-
niques to enable interface-aware fuzzing, and facilitate the dynamic
exploration of the ioctl interface provided by device drivers. DI-
FUZE performs an automated static analysis of kernel driver code to
recover their specific ioctl interface, including the valid commands
and associated data structures. It uses this recovered interface to
generate inputs to ioctl calls, which can be dispatched to the ker-
nel from userspace programs. These inputs match the commands
and structures used by the driver, enabling efficient and deeper ex-
ploration of the ioctls. The recovered interface allows the fuzzer
to make meaningful choices when mutating the data: i.e., typed
fields like pointers, enums, and integers should not be handled as
simply a sequence of bytes. DIFUZE stresses assumptions made by
the drivers in question and exposes serious security vulnerabilities.
In our experiments, we analyzed seven modern mobile devices and
found 36 vulnerabilities, of which 32 were previously unknown (4
vulnerabilities found by DIFUZE were patched during the course
of our experiments), ranging in severity from flaws that crash the
device in question causing Denial of Service (DoS) to bugs that can
give the attacker complete control over the phone.

In summary, our paper makes the following contributions:

Interface-aware fuzzing. We design a novel approach to facili-
tate the fuzzing of interface-sensitive targets, such as the
ioctl kernel driver interface on POSIX systems.

Automated driver analysis. We developed a fuzzing framework,
that can automatically analyze the kernel sources of a device.
For every driver the tool identifies all the ioctl entry points,
as well as the corresponding structures, and device file names.
We apply our technique to analyze seven devices, identifying
36 vulnerabilities. These vulnerabilities, ranging from DoS to
code execution flaws, demonstrate the efficacy and impact of
our approach. We are in the process of responsibly disclosing
these vulnerabilities to the respective driver vendors.

DIFUZE prototype. We are releasing DIFUZE as an open-source
tool at www.github.com/ucsb-seclab/difuze in the hope that
it will be useful for future security researchers.

2 BACKGROUND AND RELATEDWORK
In this section, we will explain the unique challenges that we must
overcome (and why these challenges make existing state-of-the-
art systems inapplicable to ioctl fuzzing), introduce the platform
(Android) in which our fuzzing tool operates, and compare previous
work on finding program vulnerabilities.

2.1 POSIX Device Drivers
The POSIX standard specifies an interface for the interaction of
userspace applications with device drivers. This interface supports
interaction with the device through device files, which are special
files that represent the userspace presence of the kernel-resident
device drivers. After a userspace application obtains a handle to
the device file with the open() system call, there are multiple ways
in which the application can interact with these files.

Different devices require different system calls to fulfill their
functionalities. For example, read(), write(), and seek() are pre-
sumably applicable for a hard drive device file (showing the con-
tents of the hard drive as, essentially, a single file). For an audio
device, read()might read raw audio data from themicrophone, and
write() might write raw audio data to the speakers, and seek()
might be unused.

However, some functionality cannot be implemented through
traditional system calls. For example, for the audio device, how
would a userspace application configure the sampling rate at which
to record or play audio? Such out-of-band actions are supported by
the POSIX standard through the ioctl() interface1. This system
call allows drivers to expose functionality that is hard to model as
a traditional file.

To support generality, the ioctl() interface can receive arbi-
trary driver-specified structures as input. It’s C prototype looks like
int ioctl(int file_descriptor, int request, ...), where
the first argument is the open file descriptor, the second argument
is an integer commonly known as the command identifier, and the
type and quantity of the remaining arguments are dependent on
the driver and the command identifier.
Challenges. The aforementioned property makes ioctl system
calls especially susceptible to vulnerabilities: First, unlike with
read() and write(), the data provided to an ioctl() call are of-
ten instances of extremely complex, non standard, data structures.
Parsing of such structures is not trivial, and any mistake could
introduce critical vulnerabilities directly into the kernel context.
Second, the generality of the data structure also makes the analysis
of ioctl() interfaces difficult, as an analyst must have knowledge
of how the driver in question processes different command identi-
fiers, and what type of data it expects for the optional arguments.

These are the core problems that we aim to solve. We designed
DIFUZE to automatically recover command identifiers and structure
information, build the required complex data structures, and fuzz
devices with ioctl() interfaces to find security vulnerabilities,
with minimal human intervention.

2.2 Android Operating System
Android is designed as an operating system for smartphones. A
recent report shows that Android has dominated the smartphone
OS market, with an 86.8% share in 2016 Q3 [15]. Although Android
designers take cautious steps to safeguard the devices, there are
several vulnerabilities in smartphone systems [20]. Given the pop-
ularity and increasing security problems of Android, we choose

1In the original standard, this interface was only designed for certain types of devices,
but this has changed in modern implementations.

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2124

www.github.com/ucsb-seclab/difuze

Android systems as our main target platform to evaluate our anal-
ysis approach. Note that DIFUZE also works on other Unix-like
systems.

Android is based on the Linux kernel, which has a monolithic
architecture. Although kernel modules (such as device drivers)
provide a certain level of modularity, the design principle is still
monolithic, in the sense that the entire kernel runs in a single mem-
ory space, with all its parts being equally privileged [65]. Therefore,
any vulnerability in a device driver could compromise the entire
kernel. Indeed, in 2016 more than 80% of the bugs reported in the
Android kernel were from driver code written by vendors [62]. The
Android Open Source Project allows vendors (e.g., Sony, HTC) to
customize Android kernel drivers to support new hardware, such
as digital cameras, accelerometers, or GPS devices. Because security
often takes a back seat to time-to-market for such companies, their
development process is susceptible to the introduction of security
vulnerabilities. Thankfully, the openness of the Android system
makes the source code publicly available under the GNU General
Public License [22]. This facilitates our approach, as it provides
access to a high-level, semantically rich information about a driver.

2.3 Fuzz Testing
Fuzzing is a well-known technique for program testing by gen-
erating random data as input to the programs [45]. It has drawn
much research attention, such as SPIKE [3], Valgrind [47], and
PROTOS [55].
Fuzzing. The key prospect of fuzzing is to generate “mostly-valid”
inputs to execute a target program, exercise a wide range of func-
tionality, and trigger some corner case leading to a vulnerability.
Dynamic taint tracking is a widely-used strategy to generate po-
tential inputs. Dowser [30] and BuzzFuzz [21] use taint tracking
to generate inputs that are more likely to trigger certain classes
of vulnerabilities. However, for ioctl functions, which require
highly constrained inputs, these techniques are less effective. Ap-
proaches based on taint analysis exist to recover the input format
used by the underlying program [13, 40], but they cannot recover
the cross-dependency between values, e.g., given a particular com-
mand identifier an ioctl handler will expect a further argument of
a particular type.

Evolutionary techniques represent another common input gen-
eration strategy in fuzzing systems [19, 41, 69]. VUzzer [53], and
SymFuzz [12] combine static analysis with mutation-based evolu-
tionary techniques to efficiently generate inputs. However, these
techniques are ineffective in generating highly constrained input.
DIFUZE solves this problem by first collecting possible ioctl com-
mand values and then fuzzing only the unconstrained values with
the expected input format.

If the input format of a program is known, fuzzing can be en-
hanced with a specification of the valid inputs. Peach [49] is one
of the industry standard tools. However, it cannot generate live
data (i.e., data containing active pointers to other data), and, as we
show in Section 8, many device drivers require input structures that
contain pointers. Grammar-based techniques have been used to
fuzz file formats [29], interpreters [23, 31], and compilers [18, 37],
but these techniques require inputs to have a fixed format.

Kernel and driver fuzzing. Fuzzing operating system interfaces
or system calls is a practical approach to testing the operating sys-
tem kernel [28, 34]. Most drivers use ioctl functions, a POSIX
standard, to interact with userspace. As discussed in Section 3.1,
ioctls are complex, and they require specific command values
and data formats generated by users. Identifying valid command
values and their associated data structures are the two key problems
in ioctl fuzzing. Some tools have been developed to test ioctl
interfaces for Windows kernels, such as iofuzz [17], ioattack [44],
ioctlbf [67] and ioctlfuzzer [16]. However, these tools depend on
the extensive logging and tracing of information provided by the
Windows kernel, as well as the format of ioctl commands spe-
cific to Windows. Moreover, many of these tools are simplistic in
nature. They involve simply attaching to processes and hooking
the Windows ioctl call. Once hooked, the tool mutates the values
when a call is made.This is lacking in several aspects e.g. the pro-
cesses may not exercise the full capability of the drivers, and you
cannot know the type information of the incoming data. To solve
this problem, DIFUZE analyzes the source code of device drivers
to identify valid commands and the corresponding data structure.
The analysis techniques that we use require no modification to the
actual device.

The extraction of valid ioctl commands was previously at-
tempted by Stanislas, et al., but the state-of-the-art system was
unable to scale to real-world kernel modules [38]. Conversely, as
we show in Section 8, DIFUZE scales to (and finds vulnerabilities
in) large kernel modules on real devices.

Trinity [34] and syzkaller [28] are specifically developed for
Linux syscall fuzzing. As we show in Section 8, they perform badly
when fuzzing ioctl handlers of device drivers. Although syzkaller
uses additional instrumentation techniques, like Kernel Address
Sanitizer [26], to detect more bugs, these techniques cannot be
directly used on vendor devices, since they require the analyst to
reflash the devices using custom firmware. Several approaches [8,
42, 58, 59, 64] concentrate on fuzzing specifically-chosen syscalls
and drivers. However, they only focus on specific functions and
cannot be generalized to other syscalls and drivers. DIFUZE is the
first completely automated system that can be generalized to fuzz
all Linux kernel drivers on a device running an unmodified kernel.

2.4 Other Analyses
Aside from fuzzing, there are two other analysis techniques, sym-
bolic execution, and static analysis, that are related to our work.
We will introduce these mechanisms and explain how they affect
our design.
Symbolic execution. Symbolic execution is a technique that uses
symbolic variables to generate constrained input and satisfy com-
plex checks [10].

DART [24], SAGE [25], Fuzzgrind [11] and Driller [61] combine
symbolic execution with random testing to increase the code cov-
erage. BORG [48] uses symbolic execution to generate inputs more
likely to trigger buffer overreads. Engineering issues of performing
symbolic execution on the raw devices and the fundamental path
explosion problem (made all the worse by complex system kernels)
render these techniques impractical for kernel drivers.

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2125

Build System Instrument

ioctl Handler Identification

Device File Detection

Command Value Determination

Argument Type Identification

Finding the Structure Definition

Pointer Fixup

Sub-structure
Generation

Type-Specific
Value Creation

Structure Recursion

Execution (and
Automatic Reboot)

XML

Spec.

Interface Recovery

Structure Generation

On-device Execution

Fuzz

Unit

Analysis Host

Analysis Host

Target Host

Kernel Source Code
Backtraces to Record

Vulnerabilities Being Triggered

Figure 1: The DIFUZE approach diagram. DIFUZE analyzes the provided kernel sources using a composition of analyses to
extract driver interface information, such as valid ioctl commands and argument structure types. It synthesizes instances of
these structures and dispatches them to the target device, which triggers ioctl execution with the given inputs and, eventually,
finds crashes in the device drivers.

Static analysis. Static analysis is a popular technique to find pro-
gram vulnerabilities without executing the program in question [2].
To maximize precision, these techniques typically require source
code to perform the analysis. Since many system kernels (includ-
ing the Linux kernel) and device drivers are open-source, kernel
security can greatly benefit from static analysis [7]. For example,
Ashcraft, et al. developed compiler extensions to catch integers
read from untrusted sources in Linux and OpenBSD kernels [5].
Post, et al. used a bounded model checker to find deadlocks and
memory leaks in Linux kernels [50]. Ball, et al. built a static anal-
ysis tool with a set of rules to prove the correctness of Windows
drivers [6].

One limitation of most static analysis tools is the production
of many false positives. Since our work leverages fuzzing for the
vulnerability detection step, all identified vulnerabilities are actual
bugs, and false positives are entirely avoided. Another drawback of
static analysis techniques is that the analysis often needs a manual
specification of security policies and rules.

3 OVERVIEW
In this section, we will provide an overview of our interface-aware
fuzzing approach and its application to vulnerability detection in
device drivers through ioctl fuzzing. We will also present an ex-
ample that will be referenced throughout the paper to assist the
curious reader in understanding our end-to-end system.

Figure 1 demonstrates the high-level workflow of the system.
DIFUZE requires, as input, the source code of the kernel (which
will include the source code of the device drivers) of the target host.
Since Linux is licensed under the GNU General Public License, any
software that is linked against it, such as the kernel-driver interface
code, must also be released. Thus, the kernel sources of Android
devices are readily available [27, 32, 33, 39, 46, 57, 60, 66] and can
be used for our analysis.

Given this input, DIFUZE works through a number of phases to
recover the interaction interface for device drivers, generate the

correct structures to exercise this interface, and trigger the process-
ing of these structures by the kernel of the target host. Because the
triggering of kernel bugs often renders a system unstable (leading
to a hang or reboot), only DIFUZE’s final stage is done in vivo on the
target host. The other stages are executed on an external analysis
host, their results are logged locally (for input replay, in case a bug
is triggered), and then transferred over a network connection or
debug interface to the target host.

In more detail, these stages are:

Interface recovery. In its first stage, DIFUZE analyzes the pro-
vided sources to detect what drivers are enabled on the target
host, what device files are used to interact with them, what
ioctl commands they can receive, and what structures they
expect to be passed to these commands. This series of analy-
ses are implemented using LLVM, and are further described
in Section 4. The end result of this stage is a set of tuples of
the device filename for the target driver, the target ioctl
command, and structure type definitions.

Structure generation. For each structure, DIFUZE continuously
generates structure instances: memory contents representing
instantiations of the type information recovered from the
previous step. These instances are logged and transferred
to the target host, along with the associated target device
filenames and target ioctl command identifiers. This stage
is detailed in Section 5.

On-device execution. The actual ioctl triggering component
resides on the target host itself. Upon receipt of the target
device filename, the target ioctl command, and the gener-
ated structure instances, the executor proceeds to trigger the
execution of ioctls. We discuss this stage in Section 6.

DIFUZE logs the sequence of inputs that is sent to the target.
Thus, when a bug is triggered, and the target device crashes, the
inputs can be used for reproducibility and manual triage/analysis.

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2126

3.1 Example
To help the reader understand DIFUZE, we provide an example of a
simple driver. This example is presented in Listing 1 (the structure
definitions), 2 (a wrapper around the copy_from_user function,
which presents minor complications to the analysis), Listing 4 (the
main driver initialization code), and Listing 3 (the ioctl handlers
themselves).

The function driver_init in Listing 4 is the driver initialization
function, which will be called as part of kernel initialization. This
function registers the device with a name "example_device" (line
8) and specifies that the function ioctl_handler should be invoked
when a userspace application performs the ioctl system call (lines
10 and 11) on the device file (in this case, /dev/example_device).
Although the filename is example_device, the absolute path of
the file depends on the type of device. The device in the running
example is a character device [35] and it will be created under
the /dev directory, However, there are other types of device files,
which will be created in different directories. For instance, proc
devices [54] will be created under the /proc directory.

We will refer to this example throughout the rest of the paper as
the “running example”.

1 typedef struct {
2 long sub_id;
3 char sub_name[32];
4 } DriverSubstructTwo;
5
6 typedef union {
7 long meta_id;
8 DriverSubstructTwo n_data;
9 } DriverStructTwo;
10
11 typedef struct {
12 int idx;
13 uint8_t subtype;
14 DriverStructTwo *subdata;
15 } DriverStructOne;

Listing 1: The structure definitions of our running exam-
ple. DIFUZE automatically recovers these and performs
structure-aware fuzzing of the target driver.

1 int copy_from_user_wrapper(void *buff, void *userp, size_t size) {
2 // copy size bytes from address provided by the user (userp)
3 return copy_from_user(buff, userp, size);
4 }

Listing 2: Like many real-world drivers, our example driver
ships with a wrapped copy_from_user function. Because of
wrappers like this (and more complex ones), DIFUZE must
support the analysis of nested functions.

1 DriverStructTwo dev_data1[16];
2 DriverStructTwo dev_data2[16];
3 static bool enable_short; static bool subhandler_enabled;
4
5 long ioctl_handler(struct file *file, int cmd, long arg) {
6 uint32_t curr_idx;
7 uint8_t short_idx; void *argp = (void*) arg;
8 DriverStructTwo *target_dev = NULL;
9 switch (cmd) {
10 case 0x1003:
11 target_dev = dev_data2;
12 case 0x1002:
13 if(!target_dev)
14 target_dev = dev_data1; // program continues to execute
15 if(!enable_short) {
16 if (copy_from_user_wrapper((void*)&curr_idx, argp,
17 sizeof(curr_idx))) {
18 return -ENOMEM; // failed to copy from user
19 }
20 } else {
21 if (copy_from_user_wrapper((void*)&short_idx, argp,
22 sizeof(short_idx))) {
23 return -ENOMEM; // failed to copy from user
24 }
25 curr_idx = short_idx;
26 }
27 if(curr_idx < 16)
28 return process_data(&(target_dev[curr_idx]));
29 return -EINVAL;
30 default:
31 if(subhandler_enabled)
32 return ioctl_subhandler(file, cmd, argp);
33 }
34 return -EINVAL;
35 }
36
37 long ioctl_subhandler(struct file *file, int cmd, void *argp) {
38 DriverStructOne drv_data = {0};
39 DriverStructTwo *target_dev;
40 if(cmd == 0x1001) {
41 if(copy_from_user_wrapper((void*)&drv_data, argp,
42 sizeof(drv_data))) {
43 return -ENOMEM; // failed to copy from user
44 }
45 target_dev = dev_data1;
46 if(drv_data.subtype & 1)
47 target_dev = dev_data2;
48 // Arbitrary heap write if drv_data.idx > 16
49 if(copy_from_user_wrapper((void*)&(target_dev[drv_data.idx]),
50 drv_data.subdata,
51 sizeof(DriverStructTwo))) {
52 return -ENOMEM; // failed to copy from user
53 }
54 return 0;
55 }
56 return -EINVAL;
57 }

Listing 3: The ioctl handlers which expect very specific val-
ues for the command identifiers and expect data to be pre-
sented in the proper structure for each command. The ioctl
processing is split across multiple functions.

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2127

1 static struct cdev driver_devc;
2 static dev_t client_devt;
3 static struct file_operations driver_ops;
4 __init int driver_init(void)
5 {
6 // request minor number
7 alloc_chrdev_region(&driver_devt, 0, 1, "example_device");
8 // set the ioctl handler for this device
9 driver_ops.unlocked_ioctl = ioctl_handler;
10 cdev_init(&driver_devc, &driver_ops);
11 // register the corresponding device.
12 cdev_add(&driver_devc, MKDEV(MAJOR(driver_devt), 0), 1);
13 }

Listing 4: The main driver initialization function of our
running example. It dynamically creates the driver file, the
name of which must then be recovered by DIFUZE, and reg-
isters the top-level ioctl handler, which must also be recov-
ered.

4 INTERFACE RECOVERY
To efficiently fuzz the ioctls of a device driver, DIFUZE needs to
recover the interface of that driver. The interface of a device driver is
comprised of the name/path of the device file used to communicate
with the device, the valid values for ioctl commands for that
device, and the structure definition of the ioctl data argument for
the different ioctl commands.

To recover this data, DIFUZE uses a combination of analyses,
implemented in LLVM. As the Linux kernel does not lend itself
to analysis (or even compilation) with LLVM, we first developed
an alternate build procedure. After this is done, we identify the
filename of the device files created by the device driver, find the
ioctl handler, recover the valid set of ioctl command identifiers,
and retrieve the structure definitions for the data arguments to
those ioctl commands.

4.1 Build System Instrumentation
We take several steps to enable DIFUZE to perform LLVM analyses
on Linux device drivers.

GCC compilation. First, we perform the manual step of setting
up the kernel and driver sources of the target host for compilation,
using GCC. While this is generally a well-documented process,
the vendors of mobile devices do not go out of their way to make
their GPL-mandated source code releases easy to compile, so some
manual configuration effort is required. Once the source tree can be
compiled with GCC, we run a full compilation and log all executed
commands.

GCC-to-LLVM conversion. We process the log of executed com-
mands during the compilation step with a GCC-to-LLVM command
conversion utility that we created for DIFUZE. This utility trans-
lates command-line flags from the format expected by GCC to the
format expected by LLVM utilities and enables the compilation of
the kernel source via LLVM. In its compilation, LLVM generates a
bitcode file [51] for each source file. We enable debug information
to be embedded in the bitcode file, which helps us in extracting the
structure definitions as explained in Section 4.6

Bitcode consolidation. The analyses that DIFUZE undertakes op-
erate on each driver separately. As such, we consolidate the various

bitcode files to create a single bitcode file per driver. This allows
us to carry out interface recovery analyses on a single bitcode file,
simplifying the analyses. This consolidated bitcode file is used in
the following phases to perform the analyses.

4.2 ioctl Handler Identification
As discussed in Section 2.1, much of the interaction with device
drivers happens through the ioctl interface. From userspace, the
application calls the ioctl() system call, passing in a file descriptor
to the driver’s device file, a command identifier, and the required
structured data argument. When this system call is received in ker-
nel space, the corresponding driver’s ioctl handler is invoked. This
handler then dispatches the request to different functionality inside
the driver, depending on the command identifier. In the case of our
running example, the ioctl handler function is ioctl_handler.

In order to recover valid command identifiers and the structure
definitions of additional ioctl arguments, DIFUZE must first iden-
tify the top-level ioctl handler. Each driver can register a top-level
ioctl handler for each of its device files, and there are several
ways to do this in the Linux kernel. All of these methods, however,
involve the creation of one of a set of structures2 created for this
purpose, with one of the fields of these structures being a func-
tion pointer to the ioctl handler. A full list of these structures,
and corresponding field names for one of the kernels are listed in
Appendix A.

Our analysis to identify the ioctl handler is straightforward:
using LLVM’s analysis capabilities, we find all uses of any of these
structures in the driver and recover the value of the assignment
of the ioctl handler function pointer. In the case of our running
example, we identify the write to the unlocked_ioctl field of a
file_operations structure (Listing 4, line 9).We can then consider
the function ioctl_handler as an ioctl handler.

4.3 Device File Detection
To determine the device file corresponding to an ioctl handler, we
need to identify the name provided in the registration of the ioctl
handler (for example, in our running example, the device file would
be /dev/example_device, from line 7 of Listing 4).

Depending on the type of device, there are several ways to
register the file name in the Linux kernel [14, 56]. For example,
the registration of a character device [35] will use the method
alloc_chrdev_region to associate a name with the device. For
proc devices, the method proc_create is used to provide the file-
name. Furthermore, as mentioned in Section 3.1, depending on the
device type, the directory in which the device file is found may
vary.

Given an ioctl handler, we use the following procedure to
identify the corresponding device name.

(1) First, we search for any LLVM store instruction that is
storing the address into one of the fields of any operations
structures listed in Appendix A.

(2) We then check for any reference to the operations structure
in any of the registration functions [56].

(3) We analyze the argument value for the device filename and
return it if it is a constant.

2There are at least 72 variations of these structures.

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2128

In case of the running example, Listing 4, we previously de-
termine that the ioctl handler function is ioctl_handler. We
identify that ioctl_handler is stored in the file_operations
structure (i.e., driver_ops) at line 9 (Step 1), then check for the
usage of driver_ops, as parameter for the function cdev_init
at line 10 (Step 2). The function cdev_add implies that the device
is a character device. We backtrack to the allocation function for
the device metadata (alloc_chrdrv_region) at line 7, whose third
argument is the device name, detect it as a constant string, and
return /dev/example_device as the device name.

1 VOS_INT __init RNIC_InitNetCard(VOS_VOID) {
2 ...
3 snprintf(pstDev->name, sizeof(pstDev->name),
4 "%s%s",
5 RNIC_DEV_NAME_PREFIX,
6 g_astRnicManageTbl[ucIndex].pucRnicNetCardName);
7 ...
8 }

Listing 5: Dynamically generated device name in RNIC dri-
ver onHuawei Honor phone. DIFUZE fails to find the device
name for this driver.

A driver could use dynamically created filenames, as shown in
Listing 5. Unfortunately, with the limitations inherent to static anal-
ysis, we miss such filenames and must fallback to manual analysis
(of course, if we wish to remain fully automated we can simply
ignore these devices).

Next, we proceed on to identifying valid command identifiers
accepted by a given ioctl handler.

4.4 Command Value Determination
Given the ioctl handler, we perform a static inter-procedural, path-
sensitive analysis to collect all the equality constraints on the cmd
value (i.e., the second argument of the ioctl()). We then use Range
Analysis [52] to recover the possible values for the comparison
operand. In the case of the ioctl example shown in Listing 3, we
collect the following constraints: cmd == 0x1003 (line 10), cmd ==
0x1002 (line 12) and cmd == 0x1001 (line 32→ Line 41). As the
comparison operands are constants, running Range Analysis on
them results in constants: 0x1003, 0x1002 and 0x1001 respectively.

We consider only equality constraints on the cmd value. Based
on our observation that almost all the drivers use equality com-
parison to check for the valid command IDs. There exists special
ioctl functions, such as V4L2 drivers, in which the driver specific
functions are called in a nested manner by other drivers. We expand
our solution for these cases in Appendix B.

4.5 Argument Type Identification
The ioctl command identifiers and the corresponding data struc-
ture definitions have amany-to-many relationship: each ioctl com-
mand may take several different structures (for example, based on
global configuration), and each command structure may be passed
to multiple ioctl commands. To find these structures, we first iden-
tify all the paths to the copy_from_user function, which the Linux
kernel uses to copy data from userspace to kernel space, such as
line 16 in Listing 3→ line 3 in Listing 2. We ignore call-sites whose

source operand (i.e., the second argument of copy_from_user) is
not the passed argument to the ioctl function, since such case
cannot help us to determine the ioctl argument type. At each of
the remaining call-sites, we find the type of the source operand.
This is the type definition to which the user data argument to the
ioctl handler must conform.

Note that pointer casting could hide the actual structure type.
Consider the running example, where the copy_from_user in line
3 of Listing 2 is reachable from the ioctl handler, ioctl_handler
in Listing 3 from multiple paths (like line 16, line 21, and line 32
→ line 41). However, the actual type of the source operand at the
call-site is void *. In addition, the copy_from_user function might
reside in a wrapper function and be called indirectly by the ioctl
function (such as line 16 in Listing 3→ line 3 in Listing 2), which
is distributed across different functions or files.

To handle this, we perform inter-procedural, path-sensitive type
propagation to determine all the possible types that may be assigned
to the source operand of a copy_to_user function in each path.
This gives us the set of possible types, for each given path, of the
user data argument to the ioctl handler.

To associate the command identifier to each of these structure
types, we also collect the equality constraints (as explained in
Section 4.4) along the path while performing the type propaga-
tion. The constraints on the command value on a path reaching a
copy_from_user function represent the possible command identi-
fiers associated with the structure type.

For the running example in Listing 3, we first identify all paths
reaching a copy_from_user call-site (Note that the actual call hap-
pens through the wrapper function copy_from_user_wrapper).
Table 1, column 2 shows all the relevant paths. For brevity, we
ignored the paths that have the same constraints on cmd and reach
the same call-site.

We also ignore Path 6 since the source operand is not the user
argument (i.e., at line 49 in Listing 3, the second argument of
copy_from_user_wrapper is not argp). Finally, for the remain-
ing paths, we identify the type of the destination operand of the
target copy_from_user call-site to determine the command value
type. For example, for Path 1 in Table 1, the type of argp is the
same as the destination operand curr_idx at line 16 in 3, which is
defined as uint32_t at line 6. For each command value, we may get
multiple types. For instance, as shown in Table 1, Path 1 and Path 2
have the same cmd constraint values but different argument types.
For each command value, we associate all the possible argument
types. For example, from Table 1, the command value 0x1003 can
be associated with argument types uint32_t and uint8_t. Next,
we need to extract the arguments’ structure definitions.

4.6 Finding the Structure Definition
Finding the definition of a type requires finding the definition of
all the types it is composed of. In the case of our running example,
in Listing 1, extracting the definition of type DriverStructOne
requires extracting the definitions of both DriverStructTwo and
DriverSubstructTwo.

For each of the types identified in Section 4.5, we find the source
file name of the corresponding copy_from_user function using the
debug information computed in Section 4.1. Knowing the source file,

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2129

Table 1: Relevant paths from ioctl handler (of Listing 3) to a copy_from_user call-site

Id Path cmd constraints Resolved command id User argument type
1 Line 10→ Line 11→ Line 16→ Line 3 (of Listing 2) cmd == 0x1003 0x1003 uint32_t
2 Line 10→ Line 11→ Line 21→ Line 3 (of Listing 2) cmd == 0x1003 0x1003 uint8_t

3 Line 12→ Line 16→ Line 3 (of Listing 2) cmd == 0x1002 0x1002 uint32_t
4 Line 12→ Line 21→ Line 3 (of Listing 2) cmd == 0x1002 0x1002 uint8_t

5 Line 30→ Line 32→ Line 41→ Line 3 (of Listing 2) cmd == 0x1001 0x1001 DriverStructOne
6 Line 30→ Line 32→ Line 49→ Line 3 (of Listing 2) cmd == 0x1001 0x1001 N/A

we use our GCC-to-LLVM pipeline to generate the corresponding
preprocessed file. As preprocessed files should contain a definition
of all the required types, we find the definition of the identified
type. Then we run c2xml [63] tool to parse the C struct definition
into XML format from which the required definition of the types is
extracted.

5 STRUCTURE GENERATION
After DIFUZE recovers the ioctl interface, it can begin generating
instances of structures to pass to the on-device execution engine.
The procedure for this is straightforward: DIFUZE instantiates
structures, fills their fields with random data, and properly sets
pointers to build complex inputs to ioctls.

Type-Specific Value Creation: Certain values are more likely
to trigger increased code coverage than others. For example, buffer
lengths in system code are often aligned to bit boundaries (i.e.,
buffers of size 128, 256, and so on), so values on or just under a bit
boundary aremore likely to trigger corner cases (such as single-byte
overwrites due to careless string termination). This observation
is common wisdom in the fuzzing community, and previous work
has widely used it [68]. DIFUZE leverages this concept as well, and
favors (but does not confine itself to) integers that are a power of
two, one less than a power of two, or one greater than a power of
two in its generated integers.

There are some pointers that reference data that is either unstruc-
tured (char * pointers, for example), or for which the structure
definition can’t be recovered (void * data). For this data, DIFUZE
allocates a page of random content.

Sub-structure Generation: Inputs to ioctls often take the
form of nested structures, where a top-level structure contains
pointers to other structures. DIFUZE generates these structure
instances individually and sends them to the on-device execution
component. This component, in the next stage, merges them into a
nested structure before passing them to the ioctl itself.

6 ON-DEVICE EXECUTION
While prior stages of DIFUZE run on the analysis host, the actual
execution of ioctls must happen on the target host. As such, the
structure generation component sends the generated structures,
along with the target device driver filename and ioctl command
identifier, to the on-device execution component. This component
then finalizes these structures and triggers the ioctl.

6.1 Pointer Fixup
Some structures comprise multiple memory regions connected by
pointers. To save space, the structure generation component trans-
mits the different memory region instances independently, along
with metadata about how they can be combined, and the on-device
execution component builds the complete structure using this data.
This preserves bandwidth between the analysis host and target
host, since the same data can be used for differently built structures.
For example, since the individual nodes of a tree structure will be
sent individually, these nodes can be used to create many different
final configurations of the tree structure.

Some structures are recursive. For example, a linked list nodemay
contain a pointer to the next linked list node. To set a bound on the
number of combinations of structures that the on-device execution
component attempts to create, DIFUZE limits the recursion of such
structures to a set threshold.

6.2 Execution
With the structure created, DIFUZE’s on-device execution com-
ponent opens the appropriate device file and triggers the ioctl
system call with the ioctl command identifier and the proper data
structure. At this point, DIFUZE watches for any bug in the ker-
nel, which crashes the target device. This is done by maintaining
a heartbeat signal between the analysis host and the target host.
When DIFUZE finds a bug, it logs the series of inputs that had been
sent to the host device for later reproduction and triage.

System restart. When a bug is triggered, the target host will
either be in an inconsistent state or will have crashed. In the former
case, the on-device execution component triggers a reboot of the
device before resuming fuzzing on other ioctl commands and
other drivers. In the latter case, depending on the way the crash
occurred, the device sometimes restarts itself. When that happens,
DIFUZE can resume without analyst interaction. Otherwise, an
analyst will need to reboot the device before fuzzing can resume.

7 IMPLEMENTATION
As shown in Figure 1, we engineered our system to be completely
automated. The user simply provides the compilable kernel source
archive, connects the target host (i.e., the mobile phone) to the
analysis host, and starts the on-device execution component on the
target host. After that, with a single command, our entire pipeline
will be run.

Interface Extraction: We used LLVM 3.8 to implement the
interface extraction techniques. All components of the interface

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2130

extraction are implemented as individual LLVM passes. As men-
tioned in Section 4.4, We used an existing implementation of Range
Analysis [52] to recover valid command identifiers.

7.1 Interface-Aware Fuzzing
Our implementation of Sections 5 and 6 is called MangoFuzz. Man-
goFuzz is the combination of structure generation on the analysis
host and on-device execution of ioctls, which together achieve
interface-aware fuzzing. It is an intentionally simple prototype de-
signed to test the effectiveness of interface-aware fuzzing, without
other optimizations that could influence the results.

MangoFuzz specifically targets ioctl system calls on real An-
droid devices. Using the methods described in Section 5, it generates
random sequences of ioctl calls, along with associated structures,
and sends them to the on-device execution component running on
the target host.

For a “production-ready” variant of our approach, we also in-
tegrated DIFUZE into syzkaller, a state-of-the-art Linux system
call fuzzer. This integration has the goal of creating the best pos-
sible tool, which we will contribute back to the community as an
open-source enhancement of syzkaller.

Syzkaller is a Linux system call fuzzer, which allows analysts to
(manually) provide system call descriptions, after which it will fuzz
the associated system call. Syzkaller can handle structures as system
call arguments if corresponding formats are manually specified. To
integrate with DIFUZE, we automatically convert the results of our
Interface Recovery step to the format expected by syzkaller, making
it interface-aware. Syzkaller is typically used on kernels compiled
with coverage information and KASAN (or another memory access
sanitizer). However, there is a configuration for running on real,
unmodified Android devices, which can be used for our purposes.

8 EVALUATION
To determine the effectiveness of DIFUZE we evaluate both its
interface recovery and bug-finding capabilities. The evaluation is
performed on seven different Android phones from five of the most
popular vendors, covering a wide range of device drivers. Table 2
shows the specific phones along with the vendor of the chipsets.

First, we evaluate the effectiveness and efficiency of the interface
recovery, as it is the core component of the system. To validate
the results, we manually analyze a random sampling of ioctls
and structures and check them against our system’s recovered
interfaces. We then perform a comparative evaluation of the bug
finding capabilities of DIFUZE, using both MangoFuzz and our
improvements to syzkaller as the fuzzing component.

8.1 Interface Extraction Evaluation
All the steps of interface extraction are run on the same experiment
platform, a machine with an Intel Xeon CPU E5-2690 (3.00 GHz)
running Ubuntu 16.04.2 LTS. On average, it took 55.74 minutes to
complete the entire interface extraction phase for a kernel.

We evaluate the effectiveness of different steps of our interface
extraction on the kernels of the devices listed in Table 2. Table 3
shows the interface extraction results on different kernels. DIFUZE
identified a total of 789 ioctl handlers in the kernels of seven

Table 2: Android Phones Used in Evaluation (Note that the
kernel versions were the latest Android kernels for each
phone at the time of our experiment)

Device Vendor Chipset Vendor
Android Kernel

Version
Pixel Google Qualcomm 3.18
E9 Plus HTC Mediatek 3.10
M9 HTC Qualcomm 3.10

P9 Lite Huawei Huawei 3.10
Honor 8 Huawei Huawei 4.1
Galaxy S6 Samsung Samsung 3.10
Xperia XA Sony Mediatek 3.18

Number of valid command identifiers
0 5 10 15 20 25 30 35 40 45 50 55 60

C
u

m
u

la
ti
v
e

 p
e

re
n

ta
g

e
 (

%
)

o
f

io
c
tl
 h

a
n

d
le

rs

0

10

20

30

40

50

60

70

80

90

100

Figure 2: CDF of percentage of ioctl handlers to the number
of valid command identifiers

devices. The number of handlers also closely correspond to the
number of drivers on the corresponding phone.

Device Name Identification: Our approach for device name
identification (Section 4.3) is able to work on different vendor-
specific devices. DIFUZE can automatically identify 469 device
names, accounting for 59.44% of the ioctl handlers. Most of the
identification failures come from kernel mainline drivers. For ex-
ample, our name recovery on only vendor drivers of the Xperia XA
was able to recover more than 90% of the names. The reason for
this discrepancy is that mainline drivers tend to use dynamically
generated names (Listing 5 and Section 4.3) whereas vendor drivers
tend to use static names. We manually extracted those dynamically
created device names.

Valid Command Identifiers: The fourth column of Table 3
shows the number of valid command identifiers extracted across
all the entry points of the corresponding kernels. In total, DIFUZE
found 3,565 valid command identifiers across all the drivers of all
kernels. The numbers of valid command identifiers vary consider-
ably across different kernels. As we will show in Tables 3 and 5, the
number of crashes the fuzzer found is positively correlated with
the number of valid command identifiers.

Figure 2 shows the distribution of the number of valid command
identifiers per ioctl handler. 11% of the ioctl handlers do not
expect any command. The code of these ioctls is conditionally

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2131

Table 3: Interfaces recovered by DIFUZE on different kernels of the Phones.

ioctl Device Names Valid Command User Argument Types
handlers Automatically Identified Identifiers no copy_from_user Scalar Struct Struct with pointers

Pixel 193 136 611 270 87 151 103
E9 Plus 77 36 610 272 101 195 42
M9 171 122 563 216 83 149 115

P9 Lite 71 30 384 187 56 118 23
Honor 8 86 33 376 208 70 87 11
Galaxy S6 106 70 364 243 23 67 31
Xperia XA 85 42 657 292 106 194 65

Total 789 469 3,565 1,688 526 961 390

compiled and guarded by kernel configurations. During our com-
pilation, the ioctl handler code is disabled, so the corresponding
ioctl handler appears empty in the generated bitcode file, which
leads to zero command value in our command identification process.
There are 50% of the ioctl handlers that expect a single command
identifier. Most of them are attributed to the v4l2_ioctl_ops. As
explained in Appendix B, these are nested handlers that manage
a (single) specific command. The majority (98.3%) of the ioctl
handlers have less than 20 valid command identifiers. We manually
investigate the rest (1.7%) of the ioctls with more than 20 com-
mand identifiers, and find that our approach over approximates the
function pointers for some of the ioctl functions. Although such
over estimation causes extra invalid fuzz units in our subsequent
fuzzing steps, it has marginal impact on the overall performance
(especially given that we have a small percentage of such cases).

User argument types: The last four columns in Table 3 show
how an argument passed by the user (third argument to the ioctl
handler) is treated.

For 1,688 (47%) of command identifiers, we do not find any
copy_from_user. This places us in one of two categories. (1) the
user argument is treated as C type long, and thus argument type
identification is not needed since the user argument is treated as a
raw value (and hence no copy_from_user is present). (2) Or, there
is instead a copy_to_user, where the user is meant to supply a
pointer to some type for which the kernel will copy information
to the user. We do not care about type identification here either, as
the kernel will not be processing the user data.

For the rest 1,877 (53%) of the command identifiers, the user
argument is expected to be a pointer to a specific data type. i.e., a
copy_from_user call should be used to copy the data. Such pointer
arguments can be further categorized as the following three cases.

(i) 526 (15%) of the command identifiers expect a scalar pointer
argument, For example, in our running case, as shown in Table 1,
command IDs 0x1003 and 0x1002 belongs to this category since
they expect the user argument pointing to scalar types uint32_t
or uint8_t. (ii) 961 (30%) of the command identifiers expect the
user argument to point to a C structure with no embedded point-
ers. e.g., DriverStructTwo in Listing 1. (iii) For 390 (11%) of the
command identifiers, the date type is a C structure which contains
embedded pointers. In the case of our running example, as shown
in Table 1, command ID 0x1001 belong to this category and expects
the user argument to point to DriverStructOne, which contains
embedded pointers (Listing 1). These commands are extremely hard

to effectively fuzz without the argument type information, because
the user argument is expected to point to a structure, which itself
contains pointers (which should also be valid pointers).

Random Sampling Verification:We picked a random sample
of five ioctls for each of the seven Android phones in our test set
and manually verified that the extracted types were correct. These
35 ioctls had a total of 327 commands, of which we correctly
identified the argument and commands for 294 of them, yielding a
90% accuracy.

8.2 Evaluation Setup
To determine how well DIFUZE can find actual bugs in device dri-
vers, and the effects of using the extracted interface information
on this ability, we test it both using our prototype fuzzer, Man-
goFuzz, and using syzkaller. We will use the identifiers DIFUZEm
and DIFUZEs to represent DIFUZE when it is using MangoFuzz
and syzkaller, respectively, as the fuzzing and on-device execution
component. Additionally, we evaluate the system by varying the
amount of the interface that we provide to syzkaller; this way, we
can examine how different levels of interface extraction influence
the results. Specifically, we run the following configurations of
DIFUZE:

Syzkaller base. We specify that syzkaller should only fuzz using
the system calls open() (to open the device files) and ioctl
(to trigger ioctl handlers). Its default configuration con-
tains several standard device filenames and the structures of
some standard types along with ioctls for common Linux
devices.

Syzkaller+path. In this configuration, we add the specifications
of extracted driver paths which syzkaller should try to fuzz.
However, the rest of the interface information is not pro-
vided.

DIFUZEi. Here, the extracted interface information of the device
paths and ioctls is used with syzkaller as the fuzzer. We
expect that this configuration would be able to trigger ioctl
command handling, but will be unable to explore code that
handles complex structures.

DIFUZEs. This configuration integrates all of the interface recov-
ery, including automatic identification of ioctl argument
structure formats, with syzkaller. We expect this to be the
best-performing configuration, as it is able to leverage many
of the optimizations found in syzkaller.

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2132

DIFUZEm. The final configuration integrates our interface recov-
ery with our simple fuzzer prototype, MangoFuzz. This con-
figuration is meant to explore the effect that interface-aware
fuzzing has on the number of discovered bugs, even when
other state-of-the-art optimizations are absent.

We evaluated the system on seven modern Android devices,
including the current “flagship” model of Google, and other popular
phones from Samsung Sony, and HTC. For each device, we first
updated it to the latest available version and then rooted the device.
The on-device execution component is run as root to ensure that
we can fuzz all drivers, and not just those accessible from app-level
permissions. However, as discussed in Section 9, this component
could also take the form of a standard application, though this would
come at the cost of lower accessibility to device files (and their
ioctl handlers). With this setup, we do not have code coverage
feedback or KASAN enabled, as this would require re-compiling the
kernels and flashing a non-stock kernel. More discussion on these
compile-time instrumentations can be found in Section 9. Every
one of the aforementioned DIFUZE configurations is run on each
Android device for five hours. If a crash occurs frequently in a single
driver, we blacklist the buggy ioctl handler to prevent the phone
from repeatedly crashing and the resulting reboots interfering with
the experiment.

8.3 Results
We collected all crash logs and crashing sequences of system calls,
manually triaged them, and filtered out the small number of du-
plicates. In total, DIFUZE was able to find 36 unique bugs in the
seven Android devices that were used for testing. An overview of
the found bugs is shown in Table 5.

We were unable to get syzkaller to work on the Galaxy S6 and
DIFUZEm was unable to trigger any bugs on it, making it the only
Android device for which we found zero bugs. On all the other
devices, we found anywhere from two vulnerabilities (in the Honor
8) to fourteen vulnerabilities in the Xperia XA.

The base configuration of syzkaller (without interface informa-
tion) was unable to find any bugs in our tests. Giving it the correct
paths of drivers (syzkaller+path) only yielded three crashes across
all devices. This suggests that blindly fuzzing kernel drivers is not
very effective, which is likely because such testing is undertaken
by the vendor before these devices are shipped.

When we add partial interface information in the form of the ex-
tracted ioctl numbers, DIFUZEi is able to find 22 bugs. Although
this is impressive on its own, adding the remaining interface infor-
mation (the ioctl argument structure definitions) to the interface
substantially increased the number of bugs found by 54.5%, to a to-
tal of 34 bugs. This result shows the effectiveness of interface-aware
fuzzing and, moreover, shows the importance of both the recovered
ioctl command identifiers and the structure information to the
analysis of ioctl handlers.

A particularly interesting result from our experiments is that
DIFUZEm only found four fewer bugs than DIFUZEs. Syzkaller is a
state-of-the-art tool with a large number of fuzzing strategies and
optimizations built in, while MangoFuzz is a simple fuzzing proto-
type with no optimizations except those described in Section 6. We

Table 4: Types of Crashes Found by DIFUZE

Crash Type Count
Arbitrary read 4
Arbitrary write 4
Assert Failure 6
Buffer Overflow 2
Null dereference 9
Out of bounds index 5
Uncategorized 5
Writing to non-volatile memory 1

believe this shows that fuzzing with accurate interface information
is quite powerful.

We briefly triaged each of the crashes and quickly classified the
reason that the device crashes. These results are shown in Table 4.
These are often serious bugs even when the crash itself might seem
benign. For example, an assertion error could be triggered by a
more serious underlying bug that a malicious user could carefully
craft to gain a more powerful primitive. Adding to this, one of
the more interesting bugs discovered was that we could bypass
most of the asserts encountered. The ability to bypass these checks
allowed for many would-be thwarted scenarios to become a reality.
To demonstrate the severity of our results, we exploited one of the
arbitrary write vulnerabilities to gain code execution in the kernel
and escalate from app-level privileges to root.

We are currently working on responsibly disclosing the vulnera-
bilities to the vendors. While doing so, we found that four of the
bugs were patched during the course of the experiments. To the
best of our knowledge the remaining 32 of the 36 bugs are 0-days.

In the next few subsections, we will present case studies of two
bugs found during our experiments, demonstrating their impact
and the necessity of interface information in their detection.

8.4 Case Study I: Design issue in Honor 8
One of the most interesting bugs in our collection was found not
through an OS crash (as is typical for kernel bugs), but by noticing
very strange behavior from the target host. After several fuzzing
rounds on the Huawei Honor 8, we noticed that the serial number
of the device had changed, as shown in Listing 6. The serial number
of the device should be a read-only property which only the boot
loader (which runs at the high EL3 privilege level [4]) should be able
to change. However, this occurrence shows that the serial number
can actually be changed from a userspace application (running at
the least privilege level EL0) on Android by exploiting this kernel
driver. Thus, this represents a design-level vulnerability.

This bug was found while fuzzing the driver nve. The Honor 8
has a partition on flash, nvme, which stores the device configuration
information. Some of these configuration options are unprivileged
and can be modifiable by Android. This includes whether the device
unlock is enabled and whether ramdump is allowed, but notably
excludes properties such as the board identifier and serial number,
which should only be modifiable by the boot loader. However, the
ioctl handler for the device /dev/nve provides a way to read and
write these options. Additionally, it does not check the type of

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2133

Table 5: Bugs found by each fuzzing configuration per device

syzkaller base syzkaller+path DIFUZEi DIFUZEs DIFUZEm total unique
Pixel 0 1 2 5 3 5
E9 Plus 0 0 4 6 6 6
M9 0 0 3 3 2 3
P9 Lite 0 0 2 5 5 6
Honor 8 0 0 1 2 2 2
Galaxy S6 - - - - 0 0
Xperia XA 0 2 10 13 12 14
Total 0 3 22 34 30 36

configuration option, and a malicious userspace application can
read or write the privileged configuration options.

Adding a check to disallow modifications to privilege config-
uration options could fix this issue. It should not be possible for
Android kernel running at privilege level EL1 to read or write op-
tions that belong to the boot loader running at higher privilege.
Of course, the truly correct fix for this is to separate privileged
and unprivileged options, and store them on different partitions
accessible by differently-privileged code.

before fuzzing
HWFRD:/ $ getprop ro.serialno
RNV0216811001641
after fuzzing
HWFRD:/ $ getprop ro.serialno
^Rï£¡DO>l

Listing 6: A design issue found by DIFUZEwhile fuzzing nve
driver.

8.5 Case Study II: qseecom bug
In this section, we walk through an example of a bug that was
found only with the highest level of interface extraction (that is,
type recovery/complex structure instantiation). The relevant source
is shown below, which we will reference.

1 static int qseecom_mdtp_cipher_dip(void __user *argp)
2 {
3 struct qseecom_mdtp_cipher_dip_req req;
4 u32 tzbuflenin, tzbuflenout;
5 char *tzbufin = NULL, *tzbufout = NULL;
6 int ret;
7
8 do {
9 ret = copy_from_user(&req, argp, sizeof(req));
10 if (ret) {
11 pr_err("copy_from_user failed, ret= %d\n",
12 ret);
13 break;
14 }
15 ...
16 /* Copy the input buffer from
17 userspace to kernel space */
18 tzbuflenin = PAGE_ALIGN(req.in_buf_size);
19 tzbufin = kzalloc(tzbuflenin, GFP_KERNEL);
20 if (!tzbufin) {
21 pr_err("error allocating in buffer\n");
22 ret = -ENOMEM;
23 break;
24 }
25
26 ret = copy_from_user(tzbufin, req.in_buf,
27 req.in_buf_size);

28 ...
29 } while (0);
30 ...
31 return ret;
32 }
33
34 long qseecom_ioctl(struct file *file, unsigned cmd,
35 unsigned long arg)
36 {
37 int ret = 0;
38 void __user *argp = (void __user *) arg;
39 switch (cmd) {
40 ...
41 case QSEECOM_IOCTL_MDTP_CIPHER_DIP_REQ: {
42 ...
43 ret = qseecom_mdtp_cipher_dip(argp);
44 break;
45 }
46 ...
47 }
48 return ret;
49 }

Our example is that of CVE-2017-0612 (this is one of the four bugs
which was patched during the course of the experiments) [1]. This
bug was found by our system on Google’s flagship Android phone,
the Pixel. The ioctl function for the driver starts at line 31 and
follows the common design of ioctls. The userspace application
specifies cmd and arg.

Given the cmd QSEECOM_IOCTL_MDTP_CIPHER_DIP_REQ, we en-
ter qseecom_mdtp_cipher_dip on line 39. Inside this function, on
line 9, we see our user data copied into a struct
qseecom_mdtp_cipher_dip_req req. In line 16, we see the bug.
tzbuflenin is calculated by calling PAGE_ALIGN on our user con-
trolled value of req.in_buf_size. If a userspace application pro-
vides a large value here, PAGE_ALIGN will overflow, resulting in a
value smaller than req.in_buf_size, specifically zero. Next, on
line 17, we see an attempt to kalloc this calculated size. Finally,
on line 24, the driver attempts to copy_from_user an embedded
pointer in our struct to the allocated buffer. This copy_from_user
will result in a crash, as the size of the buffer was improperly calcu-
lated. Note, however, for this crash to be observed, the user supplied
req.in_buffer must be a valid pointer (else copy_from_user will
fail gracefully, and return an error). Thus, without a properly in-
stantiated argument to the ioctl, this crash will never be triggered.

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2134

Table 6: Performance of coverage-guided fuzzing with and without interface information.

ioctl cmd ID Interface type Basic Blocks covered Percentage increaseNo interface Interface Aware
SCSI_IOCTL_SEND_COMMAND Simple Structure 3811 4629 21.46%

CDROM_SEND_PACKET Complex Structure 3956 5582 41.10%

8.6 Augmenting with Coverage-guided Fuzzing
Coverage-guided fuzzing is awell-studied technique andwas shown
to be an effective method to achieve good coverage [9]. Thus, a nat-
ural question arises: is interface awareness still needed if coverage-
guidance can be used? The answer is yes: providing interface infor-
mation for coverage-guided fuzzing will significantly improve its
performance on drivers.

To demonstrate, we ran syzkaller in the coverage-guided mode
on an x86-64 kernel, fuzzing ioctls SCSI_IOCTL_SEND_COMMAND
(which has a simple interface) and CDROM_SEND_PACKET (which has
a complex interface) with and without structure interface informa-
tion for four hours per combination. Table 6 shows the results of
these combinations, where the last column shows the percentage
increase in basic blocks reached when the interface information
was provided. This shows that interface information would still
significantly improve coverage-guided fuzzing performance.

Scaling this evaluation to our commercial devices is difficult due
to the necessity to recompile, often backporting kcov [36], and
re-flashing the kernel. This requires significant engineering effort,
outside the scope of this project.

9 DISCUSSION
We have shown that by using interface-aware fuzzing DIFUZE can
improve kernel security by uncovering potentially harmful bugs.
However, there are still some weaknesses of this approach and
directions for improvement, which we will review in this section.

9.1 Weaknesses
One problem, which we discovered while fuzzing, was that buggy
drivers could crash early on, preventing the fuzzer from exploring
deeper functionality in the driver. There are likely bugs that we
never hit, simply because an earlier bug is triggered frequently,
and each time we hit that bug the phone rebooted. With current
techniques, our only recourse was to stop fuzzing that particular
command identifier, or at times, even the whole ioctl handler and
move on to others.

Another weakness of DIFUZE is the inability to extract complex
relationships between fields of structures in the interface. It is
not uncommon that one field of a structure relates to another: for
example, a length field could specify the size of a buffer. However,
our system does not recognize these relationships, which could
potentially provide valuable information to the fuzzer.

9.2 Future Work
A valuable technique for fuzzing, found in many of the best fuzzers,
is using run-time coverage to guide the fuzzer. Currently, we do
not use this technique (though as we show in Section 8.6, we can

vastly improve coverage guided techniques with interface aware-
ness). To use run-time coverage information, we would need to
re-compile and flash the kernel to the device, which presents several
challenges. First, to get fine-grained coverage information, a devel-
opment board is needed. This can be expensive or, in many cases,
simply unavailable for real-world devices. Second, it is not always
possible to find the latest kernel sources to recompile. This is ac-
ceptable for DIFUZE, as it is unlikely that ioctl interfaces change
radically between minor kernel updates, and the actual execution
will still be performed on the latest version of the software on the
target host. However, if an older (instrumented) kernel is flashed
onto the target host, the bugs discovered as a result might already
be obsolete. Finally, some vendors do not make it easy to flash a
new kernel to the device by locking the bootloader and performing
other security checks.

For these reasons, we did not instrument the kernel to insert code
coverage measurements or the Kernel Address Sanitizer (KASAN).
Both KASAN and coverage information could further improve
the results of DIFUZE. KASAN helps to find bugs by detecting
memory corruption and triggering an assertion failure. Without it,
exploitable bugs may be triggered without causing the device to
crash, simply because the corrupted memory is not used by other
functionality, or because no important data was corrupted. Cov-
erage information could improve the system by enabling deeper
exploration of drivers as it will try to mutate inputs that trigger
previously-neglected driver functionality.

10 CONCLUSION
In this paper, we proposed interface aware fuzzing to increase the
effectiveness of automated analysis on interface-sensitive code
such as Linux kernel drivers. We provided a set of techniques to
recover the ioctl interface specifications for fuzzing such code.
We implemented all our techniques in an automated pipeline that
works directly on the kernel source archive with a single command.
We show that our technique is efficient and effective in recovering
components, device file names, valid command identifiers and corre-
sponding argument types of the interface for most drivers. We carry
out a thorough evaluation, using several different configurations of
DIFUZE on seven models of Android phones, to demonstrate that
our implementation of interface aware fuzzer is effective, finding
36 bugs, of which 32 are previously unknown vulnerabilities.

We are open sourcing our DIFUZE to provide the community
with a tool to help ensure the safety of modern mobile devices.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
comments and input to improve our paper. This material is based
on research sponsored by the Office of Naval Research under grant

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2135

numbers N00014-15-1-2948, N00014-17-1-2011 and by DARPA un-
der agreement number FA8750-15-2-0084. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

This work is also sponsored by a gift from Google’s Anti-Abuse
group.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of DARPA or the U.S. Government.

REFERENCES
[1] 2016. Android Security BulletinâĂŤMay 2017. (2016). https://

source.android.com/security/bulletin/2017-05-01.
[2] Alfred Aho, Jeffrey Ullman, Monica S. Lam, and Ravi Sethi. 1986. Compilers:

Principles, Techniques, and Tools. "Addison-Wesley".
[3] Dave Aitel. 2002. The Advantages of Block-Based Protocol Analysis for

Security Testing. (2002). https://www.immunitysec.com/downloads/
advantages_of_block_based_analysis.html.

[4] ARM. 2013. ARM Exception levels. (2013). http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ddi0488c/CHDHJIJG.html.

[5] K. Ashcraft and D. Engler. 2002. Using programmer-written compiler extensions
to catch security holes. In Proceedings of the 2002 IEEE Symposium on Security
and Privacy (SP ’02). 143–159. https://doi.org/10.1109/SECPRI.2002.1004368

[6] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg,
Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah Ustuner.
2006. Thorough Static Analysis of Device Drivers. In Proceedings of the 2006 ACM
SIGOPS/EuroSys European Conference on Computer Systems (EuroSys ’06). ACM,
New York, NY, USA, 73–85. https://doi.org/10.1145/1217935.1217943

[7] Peter T. Breuer and Simon Pickin. 2006. One Million (LOC) and Counting: Static
Analysis for Errors and Vulnerabilities in the Linux Kernel Source Code. Springer
Berlin Heidelberg, Berlin, Heidelberg, 56–70. https://doi.org/10.1007/11767077_5

[8] Laurent Butti and Julien Tinnes. 2008. Discovering and exploiting 802.11 wireless
driver vulnerabilities. Journal in Computer Virology 4, 1 (2008), 25–37.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 2008 USENIX Conference on Operating Systems Design and
Implementation (OSDI ’08). USENIX Association, Berkeley, CA, USA, 209–224.
http://dl.acm.org/citation.cfm?id=1855741.1855756

[10] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. 2006. EXE: Automatically Generating Inputs of Death. In Proceedings of
the 2006 ACM Conference on Computer and Communications Security (CCS ’06).
ACM, New York, NY, USA, 322–335. https://doi.org/10.1145/1180405.1180445

[11] Gabriel Campana. 2009. Fuzzgrind: un outil de fuzzing automatique. Actes du
(2009), 213–229.

[12] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In Proceedings of the 2015 IEEE Symposium on Security and
Privacy (SP ’15). IEEE Computer Society, Washington, DC, USA, 725–741. https:
//doi.org/10.1109/SP.2015.50

[13] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin
Kirda. 2009. Prospex: Protocol Specification Extraction. In Proceedings of the
2009 IEEE Symposium on Security and Privacy (SP ’09). IEEE Computer Society,
Washington, DC, USA, 110–125. https://doi.org/10.1109/SP.2009.14

[14] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. 2005. Linux
Device Drivers: Where the Kernel Meets the Hardware. " O’Reilly Media, Inc.".

[15] International Data Corporation. 2016. Smartphone OS Market Share. (2016).
http://www.idc.com/promo/smartphone-market-share/os.

[16] Cr4sh. 2011. IOCTL Fuzzer - Windows kernel drivers fuzzer. (2011). https:
//github.com/Cr4sh/ioctlfuzzer.

[17] debasishm89. 2014. A mutation based user mode (ring3) dumb in-memory Win-
dows Kernel (IOCTL) Fuzzer. (2014). https://github.com/debasishm89/iofuzz.

[18] Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust Type-
checker Using CLP (T). In Proceedings of the 2015 IEEE/ACM International Con-
ference on Automated Software Engineering (ASE ’15). IEEE Computer Society,
Washington, DC, USA, 482–493. https://doi.org/10.1109/ASE.2015.65

[19] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz. 2014.
KameleonFuzz: Evolutionary Fuzzing for Black-box XSS Detection. In Proceed-
ings of the 2014 ACM Conference on Data and Application Security and Privacy
(CODASPY ’14). ACM, New York, NY, USA, 37–48. https://doi.org/10.1145/
2557547.2557550

[20] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David
Wagner. 2011. A Survey of Mobile Malware in the Wild. In Proceedings of the 2011
ACM Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM

’11). ACM, New York, NY, USA, 3–14. https://doi.org/10.1145/2046614.2046618
[21] Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based Directed White-

box Fuzzing. In Proceedings of the 2009 International Conference on Software
Engineering (ICSE ’09). IEEE Computer Society, Washington, DC, USA, 474–484.
https://doi.org/10.1109/ICSE.2009.5070546

[22] GNU. 2007. GNU General Public License. (2007). https://www.gnu.org/licenses/
gpl-3.0.en.html.

[23] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based
Whitebox Fuzzing. In Proceedings of the 2008 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’08). ACM, New York, NY,
USA, 206–215. https://doi.org/10.1145/1375581.1375607

[24] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). ACM, New York,
NY, USA, 213–223. https://doi.org/10.1145/1065010.1065036

[25] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. 2008. Automated
Whitebox Fuzz Testing.. In Proceedings of the 2008 Symposium on Network and
Distributed System Security (NDSS ’08). San Diego, CA, USA.

[26] Google. 2016. The Kernel Address Sanitizer. (2016). https://www.kernel.org/
doc/html/latest/dev-tools/kasan.html.

[27] Google. 2017. Goole Android Kernel Sources. (2017). https://
android.googlesource.com/kernel.

[28] Google. 2017. syzkaller - linux syscall fuzzer. (2017). https://github.com/google/
syzkaller.

[29] Gustavo Grieco, Martín Ceresa, and Pablo Buiras. 2016. QuickFuzz: An Automatic
Random Fuzzer for Common File Formats. In Proceedings of the 2016 International
Symposium on Haskell (Haskell ’16). ACM, New York, NY, USA, 13–20. https:
//doi.org/10.1145/2976002.2976017

[30] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013.
Dowser: a guided fuzzer to find buffer overflow vulnerabilities. In Proceedings of
the 2013 USENIX Security Symposium (SEC ’13). Washington, DC, USA, 49–64.

[31] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments.. In Proceedings of the 2012 USENIX Security Symposium (SEC ’12).
Bellevue, WA, USA, 445–458.

[32] HTC. 2017. HTC Android Kernel Sources. (2017). https://www.htcdev.com/
devcenter/downloads.

[33] Huawei. 2017. Huawei Android Kernel Sources. (2017). http://
consumer.huawei.com/ng/support/downloads/index.htm.

[34] Dave Jones. 2011. Trinity: A system call fuzzer. In Proceedings of the 2011 Ottawa
Linux Symposium (OLS ’11).

[35] kernel. 2001. Character device registration. (2001). http://www.makelinux.net/
ldd3/chp-3-sect-4.

[36] Paul Larson, Nigel Hinds, Rajan Ravindran, andHubertus Franke. 2003. Improving
the Linux Test Project with kernel code coverage analysis. In Proceedings of the
2003 Ottawa Linux Symposium (OLS ’03).

[37] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs via
Guided Stochastic Program Mutation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA ’15). ACM, New York, NY, USA, 386–399. https://
doi.org/10.1145/2814270.2814319

[38] Stanislas Lejay. 2016. Fuzzing IOCTLs with angr. (2016). https://thunderco.re/
project/security/2016/07/18/fuzzing-ioctls/.

[39] LG. 2017. LG Android Kernel Sources. (2017). http://opensource.lge.com/osList/
list?m=Mc001&s=Sc002.

[40] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic Reverse En-
gineering of Data Structures from Binary Execution. In Proceedings of the 2010
Annual Information Security Symposium (CERIAS ’10). CERIAS - Purdue Univer-
sity, West Lafayette, IN, Article 5, 1 pages. http://dl.acm.org/citation.cfm?id=
2788959.2788964

[41] Guang-Hong Liu, Gang Wu, Zheng Tao, Jian-Mei Shuai, and Zhuo-Chun Tang.
2008. Vulnerability analysis for x86 executables using genetic algorithm and
fuzzing. In Proceedings of the 2008 Convergence and Hybrid Information Technology
(ICCIT ’08), Vol. 2. IEEE, 491–497.

[42] Manuel Mendonça and Nuno Neves. 2008. Fuzzing wi-fi drivers to locate secu-
rity vulnerabilities. In Proceedings of the 2008 Dependable Computing Conference
(EDCC ’08). IEEE, 110–119.

[43] Alessio Merlo, Gabriele Costa, Luca Verderame, and Alessandro Armando. 2016.
Android vs. SEAndroid. Pervasive Mob. Comput. 30, C (Aug. 2016), 113–131.
https://doi.org/10.1016/j.pmcj.2016.01.006

[44] Microsoft. 2017. How to Perform Fuzz Tests with IoSpy and IoAttack.
(2017). https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/
how-to-perform-fuzz-tests-with-iospy-and-ioattack.

[45] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study
of the Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990), 32–44.
https://doi.org/10.1145/96267.96279

[46] Motorola. 2017. Motorola Android Kernel Sources. (2017). https://github.com/
MotorolaMobilityLLC.

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2136

https://source.android.com/security/bulletin/2017-05-01
https://source.android.com/security/bulletin/2017-05-01
https://www.immunitysec.com/downloads/advantages_of_block_based_analysis.html
https://www.immunitysec.com/downloads/advantages_of_block_based_analysis.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDHJIJG.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDHJIJG.html
https://doi.org/10.1109/SECPRI.2002.1004368
https://doi.org/10.1145/1217935.1217943
https://doi.org/10.1007/11767077_5
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2009.14
http://www.idc.com/promo/smartphone-market-share/os
https://github.com/Cr4sh/ioctlfuzzer
https://github.com/Cr4sh/ioctlfuzzer
https://github.com/debasishm89/iofuzz
https://doi.org/10.1109/ASE.2015.65
https://doi.org/10.1145/2557547.2557550
https://doi.org/10.1145/2557547.2557550
https://doi.org/10.1145/2046614.2046618
https://doi.org/10.1109/ICSE.2009.5070546
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1065010.1065036
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://android.googlesource.com/kernel
https://android.googlesource.com/kernel
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://doi.org/10.1145/2976002.2976017
https://doi.org/10.1145/2976002.2976017
https://www.htcdev.com/devcenter/downloads
https://www.htcdev.com/devcenter/downloads
http://consumer.huawei.com/ng/support/downloads/index.htm
http://consumer.huawei.com/ng/support/downloads/index.htm
http://www.makelinux.net/ldd3/chp-3-sect-4
http://www.makelinux.net/ldd3/chp-3-sect-4
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2814270.2814319
https://thunderco.re/project/security/2016/07/18/fuzzing-ioctls/
https://thunderco.re/project/security/2016/07/18/fuzzing-ioctls/
http://opensource.lge.com/osList/list?m=Mc001&s=Sc002
http://opensource.lge.com/osList/list?m=Mc001&s=Sc002
http://dl.acm.org/citation.cfm?id=2788959.2788964
http://dl.acm.org/citation.cfm?id=2788959.2788964
https://doi.org/10.1016/j.pmcj.2016.01.006
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/how-to-perform-fuzz-tests-with-iospy-and-ioattack
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/how-to-perform-fuzz-tests-with-iospy-and-ioattack
https://doi.org/10.1145/96267.96279
https://github.com/MotorolaMobilityLLC
https://github.com/MotorolaMobilityLLC

[47] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
’07). ACM, New York, NY, USA, 89–100. https://doi.org/10.1145/1250734.1250746

[48] Matthias Neugschwandtner, Paolo Milani Comparetti, Istvan Haller, and Her-
bert Bos. 2015. The BORG: Nanoprobing Binaries for Buffer Overreads. In Pro-
ceedings of the 2015 ACM Conference on Data and Application Security and Pri-
vacy (CODASPY ’15). ACM, New York, NY, USA, 87–97. https://doi.org/10.1145/
2699026.2699098

[49] Peach. 2017. The Peach Fuzzer. (2017). http://www.peachfuzzer.com/.
[50] Hendrik Post and Wolfgang Küchlin. 2007. Integrated Static Analysis for Linux

Device Driver Verification. Springer Berlin Heidelberg, Berlin, Heidelberg, 518–537.
https://doi.org/10.1007/978-3-540-73210-5_27

[51] LLVM Project. 2003. LLVM Bitcode File Format. (2003). http://llvm.org/docs/
BitCodeFormat.html.

[52] Fernando Magno Quintao Pereira, Raphael Ernani Rodrigues, and Victor Hugo
Sperle Campos. 2013. A fast and low-overhead technique to secure programs
against integer overflows. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO ’13). IEEE Computer
Society, 1–11.

[53] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In
Proceedings of the 2017 Network and Distributed System Security Symposium (NDSS
’17). San Diego, CA, USA.

[54] redhat. 2017. Proc device registration. (2017). https://access.redhat.com/
documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Reference_Guide/s2-
proc-devices.html.

[55] Juha Röning, Marko Laakso, and Ari Takanen. 2002. PROTOS – Systematic
Approach to Eliminate Software Vulnerabilities. Invited presentation at Microsoft
Research (May 2002).

[56] Alessandro Rubini and Jonathan Corbet. 2001. Linux device drivers. " O’Reilly
Media, Inc.".

[57] Samsung. 2017. Samsung Android Kernel Sources. (2017). http:
//opensource.samsung.com/reception/receptionSub.do?method=sub&sub=
T&menu_item=mobile&classification1=mobile_phone.

[58] Sergej Schumilo, Ralf Spenneberg, and H Schwartke. 2014. DonâĂŹt trust your
USB! How to find bugs in USB device drivers. Blackhat Europe (2014).

[59] Kwan Yong Sim, F-C Kuo, and R Merkel. 2011. Fuzzing the out-of-memory killer
on embedded Linux: an adaptive random approach. In Proceedings of the 2011
ACM Symposium on Applied Computing (SAC ’11). ACM, 387–392.

[60] Sony. 2017. Sony Android Kernel Sources. (2017). https://github.com/
sonyxperiadev/kernel.

[61] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
Proceedings of the 2016 Network and Distributed System Security Symposium (NDSS
’16). San Diego, CA, USA.

[62] Jeffrey Vander Stoep. 2016. Android: protecting the kernel. In Linux Security
Summit. Linux Foundation.

[63] Linus Torvalds. 2011. C2XML - Converting source code to XML. (2011). http:
//c2xml.sourceforge.net/.

[64] Vincent M Weaver and Dave Jones. 2015. perf fuzzer: Targeted fuzzing of the perf
event open () system call. Technical Report. Technical Report UMAINEVMW-TR-
PERF-FUZZER, University of Maine.

[65] Wiki. 2017. TanenbaumâĂŞTorvalds debate. (2017). https://en.wikipedia.org/
wiki/Tanenbaum%E2%80%93Torvalds_debate.

[66] Xiaomi. 2017. Xiaomi Android Kernel Sources. (2017). https://github.com/
MiCode/Xiaomi_Kernel_OpenSource.

[67] Xst3nZ. 2012. IOCTLbf is just a small tool (Proof of Concept) that can be
used to search vulnerabilities in Windows kernel drivers. (2012). https:
//code.google.com/archive/p/ioctlbf/.

[68] Michal Zalewski. 2014. Binary fuzzing strategies: what works, what doesn’t.
(2014). https://lcamtuf .blogspot.com/2014/08/binary-fuzzing-strategies-what-
works.html.

[69] M. Zalewski. 2017. American Fuzzy Lop. (2017). http://lcamtuf .coredump.cx/
afl/technical_details.txt.

A IOCTL REGISTRATION STRUCTURES
There are several structures that could be used by the Linux ker-
nel drivers to register an ioctl handler. Listing 7 shows the list of
structures in the Kernel running on the Huawei P9.

B HANDLING V4L2 DRIVERS

struct.media_file_operations
struct.video_device
struct.v4l2_file_operations
struct.block_device_operations
struct.tty_operations
struct.posix_clock_operations
struct.security_operations
struct.file_operations
struct.v4l2_subdev_core_ops
struct.snd_pcm_ops
struct.snd_hwdep_ops
struct.snd_info_entry_ops
struct.adf_obj_ops
struct.net_device_ops
struct.kvm_device_ops
struct.ide_disk_ops
struct.ide_ioctl_devset
struct.hdlcdrv_ops
struct.uart_ops
struct.fb_ops
struct.proto_ops
struct.tty_ldisc_ops
struct.watchdog_ops
struct.atmdev_ops
struct.atmphy_ops
struct.atm_ioctl
struct.vfio_device_ops
struct.vfio_iommu_driver_ops
struct.rtc_class_ops
struct.usb_gadget_ops
struct.ppp_channel_ops
struct.cdrom_device_info
struct.cdrom_device_ops

Listing 7: List of structures that can be used to register an
ioctl handler.

There are certain ioctl functions whose commands and argu-
ments are first verified by the Linux kernel before the driver specific
functions are invoked. This includes Video for Linux (v4l2) ioctls as
shown in Listing 8, where the driver provides a standardized, over-
rideable ioctl handler (set by drivers using the v4l2_ioctl_ops
structure, line 2 in Listing 8) to ease the creation of video devices
(such as cameras). The Linux kernel implements the ioctl handler
function video_ioctl2 (line 10), which checks the provided ioctl
identifier and calls specific v4l2 handler functions provided by the
driver itself. Similar to other ioctl handlers, video_ioctl2 also ex-
pects specific structures from the user, depending on the command
identifier. Furthermore, the dispatched v4l2 handler functions them-
selves also expect properly formatted input with proper command
codes passed in.

This poses two analysis challenges. First, as mentioned in Sec-
tion 4.1, we consider only the functions defined by the driver. As
such, we would miss the ioctl handler video_ioctl2, which is
defined by the kernel. To handle this, we identify the v4l2 registra-
tion function video_register_device (line 32) and traverse the
structures of its arguments to identify the v4l2_ioctl_ops data
structure (line 32 → 29 → 13 → 17 → 2), treating each function
pointer in the structure as analogous to a top-level ioctl handler.
However, we need to tackle a second problem. In order to trigger the
execution of any of the functions registered via v4l2_ioctl_ops,
the proper standardized v4l2 ioctl command identifier must be
provided. Furthermore, the sub-handlers provided by the driver
introduce their own command identifiers as well. Thus, DIFUZE
keeps track of a nested interface for such devices..

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2137

https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/2699026.2699098
https://doi.org/10.1145/2699026.2699098
http://www.peachfuzzer.com/
https://doi.org/10.1007/978-3-540-73210-5_27
http://llvm.org/docs/BitCodeFormat.html
http://llvm.org/docs/BitCodeFormat.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Reference_Guide/s2-proc-devices.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Reference_Guide/s2-proc-devices.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Reference_Guide/s2-proc-devices.html
http://opensource.samsung.com/reception/receptionSub.do?method=sub&sub=T&menu_item=mobile&classification1=mobile_phone
http://opensource.samsung.com/reception/receptionSub.do?method=sub&sub=T&menu_item=mobile&classification1=mobile_phone
http://opensource.samsung.com/reception/receptionSub.do?method=sub&sub=T&menu_item=mobile&classification1=mobile_phone
https://github.com/sonyxperiadev/kernel
https://github.com/sonyxperiadev/kernel
http://c2xml.sourceforge.net/
http://c2xml.sourceforge.net/
https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://github.com/MiCode/Xiaomi_Kernel_OpenSource
https://github.com/MiCode/Xiaomi_Kernel_OpenSource
https://code.google.com/archive/p/ioctlbf/
https://code.google.com/archive/p/ioctlbf/
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

1 // v4l2_ioctl_ops initialized with required functions.
2 static const struct v4l2_ioctl_ops iris_ioctl_ops = {
3 .vidioc_querycap = iris_vidioc_querycap,
4 .vidioc_s_tuner = iris_vidioc_s_tuner
5 }
6
7 static const struct v4l2_file_operations iris_fops = {
8 // here video_ioctl2, implemented by kernel
9 // is the main ioctl handler.
10 .unlocked_ioctl = video_ioctl2
11 };
12
13 static struct video_device iris_viddev_template = {
14 //initialize file operations.
15 .fops = &iris_fops,
16 // initialize ioctl operations.
17 .ioctl_ops = &iris_ioctl_ops
18 };
19
20 static int __init driver_init() {
21 struct iris_device *radio;
22 int radio_nr = -1;
23 radio = kzalloc(sizeof(struct iris_device), GFP_KERNEL);
24 if (!radio) {
25 FMDERR(": Could not allocate radio device\n");
26 return -ENOMEM;
27 }
28 // copy the video_device structure.
29 memcpy(radio->videodev, &iris_viddev_template,
30 sizeof(iris_viddev_template));
31 // register the v4l2 device
32 video_register_device(radio->videodev, VFL_TYPE_RADIO, radio_nr);
33 }

Listing 8: Example of a v4l2_ioctl_ops initialization and reg-
istering of a v4l2 device.

1 vidioc_querycap:2154321408
2 vidioc_s_tuner:1079268894

Listing 9: An example v4l2-function-mapping, which con-
tains entries in <function name>:<command id> format.

To handle this, we first create a mapping between the command
ID and the function pointer, to identify which function in the set
will be called for a given command value. DIFUZE automatically
extracts such information with LLVM. For the example v4l2 driver
in Listing 8, we generate a mapping called v4l2-function-mapping,
as shown in Listing 9. DIFUZE associates the sub-handler func-
tions iris_vidioc_querycap and iris_vidioc_s_tuner (line 3
and line 4 in Listing 8), with v4l2-standard ioctl command identi-
fiers of 2154321408 and 1079268894 (line 1 and line 4 in Listing 9).
These functions would then be further analyzed to recover nested
interface information.

Session J2: Fun with Fuzzing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2138

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 POSIX Device Drivers
	2.2 Android Operating System
	2.3 Fuzz Testing
	2.4 Other Analyses

	3 Overview
	3.1 Example

	4 Interface Recovery
	4.1 Build System Instrumentation
	4.2 ioctl Handler Identification
	4.3 Device File Detection
	4.4 Command Value Determination
	4.5 Argument Type Identification
	4.6 Finding the Structure Definition

	5 Structure Generation
	6 On-device Execution
	6.1 Pointer Fixup
	6.2 Execution

	7 Implementation
	7.1 Interface-Aware Fuzzing

	8 Evaluation
	8.1 Interface Extraction Evaluation
	8.2 Evaluation Setup
	8.3 Results
	8.4 Case Study I: Design issue in Honor 8
	8.5 Case Study II: qseecom bug
	8.6 Augmenting with Coverage-guided Fuzzing

	9 Discussion
	9.1 Weaknesses
	9.2 Future Work

	10 Conclusion
	Acknowledgments
	References
	A ioctl Registration Structures
	B Handling V4L2 Drivers

